大家好,今天小编关注到一个比较有意思的话题,就是关于python作为胶水语言的问题,于是小编就整理了2个相关介绍Python作为胶水语言的解答,让我们一起看看吧。
python兼职工作有哪些?
1. 首先在web领域,你可以用Python来做开发,网站,app,小程序Python都可以用来做。可以自己在家通过一些猪八戒网,程序员***网,来做一些web外包项目。
2. 学会Python的好处就是,因为Python是胶水语言实用方面特别多,Python爬虫这一块也是非常好的方向,你不去上班,爬虫技能可以让你在网上找到更多的***项目。
3. Python可以做自动化运维的,帮一些公司在linux管理服务器集群,很多公司的项目都不是特别大,有不会专门找一个运维,会在网上***找一个运维工程师,来搭理一下服务器。
4. 数据分析这一块,找的一些***项目报酬应该更多。数据分析适用的行业,金融行业投资理财的分析,针对某一个行业的诊断,都需要数据分析,数据分析在医疗行业应用也特别多,帮一些疾病做诊断。这些行业的***项目也非常多,自己只需要在已有的数据基础上,用学过的数据分析知识来做好项目
r语言和python语言相似么?
R言和Python语言在某些方面是相似的,但也存在一些区别。以下是它们的相似点和区别:
相似点:
1. 开源语言:R语言和Python语言都是开源的,可以免费获取和使用。
2. 数据科学和统计分析:两者都在数据科学和统计分析领域广泛使用,并提供了许多用于数据操作、统计分析和可视化的库和包。
3. 社区支持:R语言和Python语言都有活跃的开发者社区和丰富的***,可以获取到大量的开源库、代码示例和技术支持。
区别:
1. 语法和设计:R语言主要设计用于统计分析和数据处理,其语法较为专注于数据处理和向量化操作。Python语言则更通用,具有更广泛的应用领域,语法设计追求简洁和易读性。
2. 生态系统和库:Python拥有庞大的生态系统,涵盖了广泛的领域,并提供了许多通用库和工具。R语言则在统计分析和数据可视化方面具有更为强大和专业的库和包。
不相似。R分析数据时需要先通过数据如果是统计理论研究、前沿科学研究,R比python更胜一筹。 R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比python在这方面贫乏不少。 R的使用人群主要是一些高校、医药的统计学家,新出现的理论很快就被社区开发出相应的库,以供调用。
python的工程化应用强于R。 Python的优势在于其胶水语言的特性,由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。 如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就可以在下述任何平台上面运行。 些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE甚至还有PocketPC、Symbian以及Google基于linux开发的Android平台!
python的应用场景大于R。 Python是一套比较平衡的语言,各方面都可以,而R是在统计、数据分析方面比较突出。 但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。
python处理大数据的速度快于R。 一些底层用C写的算法封装在python包里后性能非常高。
到此,以上就是小编对于python作为胶水语言的问题就介绍到这了,希望介绍关于python作为胶水语言的2点解答对大家有用。