python编程size,python编程sim card

dfnjsfkhak 46 0

大家好,今天小编关注到一个意思的话题,就是关于python编程size的问题,于是小编就整理了3个相关介绍Python编程size的解答,让我们一起看看吧。

  1. Python中,除了matplotlib外,还有哪些数据可视化的库?
  2. python:如何以非阻塞的方式读?
  3. Python有哪些数据可视化方法?

Python中,除了matplotlib外,还有哪些数据可视化的库?

推荐: plotnine和seaborn(seaborn有人回答过了,这里不再重复叙述)

说起plotnine,可能感觉小众,但说到ggplot2, 在R的世界里可是大名鼎鼎。两年前,一直找python版本的ggplot版本,当时有人移植过,但是用起来bug比较多,各种坑。直到去年后半年,找到了plotnine这个包,细节上虽然没有ggplot的完美,但基本可用,并且一直在维护。当时激动不已~

python编程size,python编程sim card-第1张图片-芜湖力博教育咨询公司
图片来源网络,侵删)

最特色也是吸引我的地方有两点:

数据是数据,绘图是绘图。同一份数据,可根据不同的绘图命令,按需展示成各种不同的图片,而不是按不同的绘图需求,调整各种数据。

按图层叠加,一个图层一个图层的绘制

python编程size,python编程sim card-第2张图片-芜湖力博教育咨询公司
(图片来源网络,侵删)

这里主要介绍python的另一个可视化库pandas。

Pandas是一个功能非常非常强大的数据分析工具,广泛的应用于各个领域,包括金融,经济,统计,分析等学术和商业领域。在本文中,我们只是简单的介绍如何使用pandas做数据的可视化。

通过pip命令我们可以非常容易的把pansdas环境安装好。因为pandas是在matplotlib的基础开发提供更易用的绘图接口,所以我们在准备环境的时候需要安装matplotlib。

python编程size,python编程sim card-第3张图片-芜湖力博教育咨询公司
(图片来源网络,侵删)

pip install matplotlib

pip install pandas

环境准备好了,我们接下来看看如何使用pandas做数据的可视化。Pandas的一个基本概念是数据帧(DataFrame),它是二维表格数据结构,我们可以简单的理解为数据的行和列的表格。下面我们看看如何在DataFrame绘制各种类型的图表。

DataFrame上的线条图其实只是对matplotlib库的plot()方法的简单包装。下面代码中我们随机生成4组包含30个值的数据来绘制线条图。每一组数据在线条图上由不同的颜色表示

执行上面示例代码, 我们得到图表:

谢邀,我来介绍几个我日常在使用的python数据可视化工具——seaborn和pyecharts。

Seaborn是一个在Python中制作有吸引力和信息丰富的统计图形的库。 它建立在matplotlib之上,并与PyData集成,包括对来自scipy和stat***odels的numpy和pandas数据结构和统计例子的支持

seaborn提供的一些功能是

为matplotlib图形设计几种内置主题;

用于选择调色板的工具,用于制作能够显示数据模式的美丽情节;

用于可视化单变量和双变量分布或用于在数据子集之间进行比较的函数

针对不同种类的独立和因变量拟合和可视化线性回归模型的工具;

可视化数据矩阵并使用聚类算法来发现这些矩阵中的结构的功能;

绘制统计时间序列数据的功能,灵活估计和表示估计的不确定性;

python:如何以非阻塞的方式读?

代码是这样的: subp = subprocess.Popen(["d:/T1.exe"], shell=True, stdout=subprocess.PIPE, bufsize=0) subp.stdout.read() 但是发现read和readline函数是阻塞方式调用的,一定要subprocess运行结束才能返回数据。

Python有哪些数据可视化方法?

这里介绍2种python可视化的方法,分别是seaborn和pyecharts,这2个库简单易学、容易上手,可以快速绘制出简洁、漂亮的图表,而且代码量少,使用起来非常方便,下面我简单介绍一下这2个库的安装和使用,实验环境win10+python3.6+pycharm5.0,主要内容如下:

1.安装seaborn,这个直接在cmd窗口输入命令“pip install seaborn”就行,如下:

2.安装成功后,我们可以进行一下简单的测试了,主要代码如下(官方示例):

程序运行截图如下,制图效果还不错:

3.至于更多的示例的话,可以查看一下***的教程,种类繁多,注释清楚,介绍详细,很适合开发者来学习

1.下载安装pyecharts,这个直接在cmd窗口输入命令“pip install pyecharts”就行,如下:

使用python完成数据可视化,可以选择的库非常多,比如matplotlib、pyecharts、seaborn、ggplot、Plotly,以及在完成词云图的WordCloud库。

在这里建议一定要学matplotlib,原因有以下几点:

seaborn、ggplot、Plotly等可视化库是基于matplotlib库开发的,地位不可撼动;

matplotlib[_a***_]广泛,拜读大佬的程序的时候会经常看到该库

就要说到Python之所以应用广泛是因为Python在大数据、机器学习、人工智能等领域应用具有很大的优势,而在这些行业中会经常使用matplotlib画图

当然会用了matplotlib还是不足的,还需要学习简单易懂、效果炫酷的其他可视化库,这里建议学习pyecharts。

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。

pyecharts操作比较简单,官方中文网站介绍的非常详细,适合新手学习数据可视化。但是目前开发团队正在开发V1.0版本(还未正式发布),并且与先前的版本不兼容,会有很大改进,值得我们期待。

建议新手可以先学习0.5.11版本的pyecharts

到此,以上就是小编对于python编程size的问题就介绍到这了,希望介绍关于python编程size的3点解答对大家有用

标签: 可视化 数据 python