大家好,今天小编关注到一个比较有意思的话题,就是关于c语言矩阵的转置的问题,于是小编就整理了3个相关介绍c语言矩阵的转置的解答,让我们一起看看吧。
三阶矩阵的转置公式?
矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T \frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA \frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:
如果要计算Y = XB Y = X*BY=XB中,d Y d X \frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T \frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
矩阵的转置公式?
设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b。 矩阵a经过初等列变换之后,可化为下三角矩阵c,则a等价于c。 显然,b的转置矩阵b=c。 所以,矩阵a与矩阵a的转置矩阵的特征值相同。先把行列式的某一行(列)全部化为 1 。
再利用该行(列)把行列式化为三角形行列式,从而求出它的值。
这是因为所求行列式有如下特点:各行元素之和相等; 各列元素除一个以外也相等。
矩阵A的39;转置的转置等于原来的矩阵A,矩阵A加矩阵B的转置等于矩阵A的转置加上B的转置。如果转置矩阵前面是与常数K,那么常数是不发生变化的,仍然是K。
AB矩阵的转置等于B的转置乘以A的转置。对于逆矩阵,如果A矩阵的逆矩阵的逆矩等于A矩阵。KA的逆矩阵等于K分之一乘以A的逆矩阵。AB的逆矩阵等于B的逆矩阵乘以A的逆矩阵。
三个矩阵相乘转置的运算法则?
转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素)。直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
扩展资料:
矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。
当矩阵A的列数等于矩阵B的行数时,A与B可以相乘。矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
三个矩阵相乘时,按照顺序相乘即可,比如ABC,先乘AB,再算ABC,这样是对的;也可以先算BC,再算ABC,因为矩阵乘法满足结合律。
矩阵乘法的性质:
1、满足乘法结合律: (AB)C=A(BC)
2、满足乘法左分配律:(A+B)C=AC+BC
3、满足乘法右分配律:C(A+B)=CA+CB
4、满足对数乘的结合性k(AB)=(kA)B=A(kB)
5、转置 (AB)T=BTAT
6、矩阵乘法一般不满足交换律
乘法结合律:三个数相乘,先把前面两个数相乘,先乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。
字母表示:(a×b)×c=a×(b×c)
到此,以上就是小编对于c语言矩阵的转置的问题就介绍到这了,希望介绍关于c语言矩阵的转置的3点解答对大家有用。